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Abstract78

Deep neural network models are state-of-the-art for many image, audio, text, and video79

processing problems in different fields of study and disciplines. However, training many of80

these networks can require a lot of data and gathering such data can be time consuming,81

costly, and difficult to set-up. This limiting factor can prevent researchers and engineers82

that do not have access to a lot of resources from using all the tools and models available83

in deep learning to tackle novel problems in their respective fields. To work around these84

data limitations, many techniques and models in the field of Few-Shot Learning have been85

proposed over the years in the sub-fields of transfer learning, data augmentation, and meta86

learning. One such model, Physics-Informed Neural Networks or PINNs, relies on the fact87

that datasets collected in the real world must follow the laws of physics, allowing us to88

leverage our knowledge of physics to help improve performance on these datasets without89

requiring more data to be gathered. I propose 4 ways of extending this type of approach that90

leverages our knowledge of physics through new models and data augmentation techniques91

in this dissertation, and apply these approaches to two problems that have limited datasets:92

the problem of Fluid Flow Velocity Prediction in the field of mechanical engineering and93

the problem of Glacial Ice Segmentation from geology.94

A detailed explanation of the importance of data gathering, difficulties and limitations,95

and my expected contributions for this area along with a timeline are presented in Chapter96

1. The remaining chapters each describe one of the four expected contributions of my97

dissertation in chronological order.98

v



Chapter 199

Introduction100

1.1 The Need For Data In Neural Networks101

Deep neural network models dominate as the state-of-the-art machine learning (ML) models102

that have the best performance across many different image [1] [2] [3], text [4], and video103

processing tasks applied to multiple disciplines and fields of study. From text generation104

with large language models (LLMs) such as GPT-3 [5], object tracking used by the space105

sector to analyze the sun [6] and other galactic bodies, object detection used by self-driving106

cars [7], to the rise of mobile apps for synthetic audio and image generation that has caught107

the attention of regular everyday people. Although there are different architectures and108

different ways to train these networks depending on the task being considered, there is a109

big commonality among all machine learning (ML) models which is the need to have a lot110

of data to train these models.111

1.2 The Difficulty of Getting Data112

Data gathering is one of the most fundamental and important problems in machine learning113

(ML), as without data there is nothing to train your models with and the quality and114

quantity of your data makes a big impact on the performance of your given model. The115

state-of-the-art text generation model GPT-3 [5] was trained on 45TB of text data crawled116

from the publicly available Internet, Google trained their MLP-Mixer [8] and a few other117

models a 300 million image private subset of the images extracted from their search engine118

database called JFT-300M, and NVIDIA’s StyleGan2 [9] research used the FFHQ dataset119
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which has 70,000 images and the LSUN dataset which has 10 categories with each having120

from 120,000 to 3,000,000 images.121

Although there have been efforts made in different fields to create uniform and useful122

datasets, data gathering is still one of the main limiting factors preventing researchers of123

other disciplines from using all the tools and models we have available in deep learning.124

Data gathering is typically very time consuming, difficult to set-up, and costly in terms125

of monetary expenses. Big tech companies don’t struggle with this problem as much as126

university researchers and smaller companies do as they have bigger budgets and more127

staff available for data collection purposes. Even though the research groups as these128

companies sometimes make their datasets publicly available for others to use [10] [11]129

[12], these datasets which usually consist of RGB photographs are not useful to people in130

other fields of study to solve problems in their respective disciplines. The data needed to131

solve problems in neuroscience, geology, medicine, and other disciplines will often require132

advanced equipment, domain experts, and be stored in a different digital format than133

regular camera photographs.134

1.3 Working Around Data Limitations With Few-Shot135

Learning136

The challenges of data gathering and the eagerness of researchers to use neural networks137

has steadily given rise to a field called “Few-Shot Learning” over the years. The idea138

behind few-shot learning is to train deep neural network models with a “few” labeled139

data samples but still achieve good performance for the given problem. This way you140

can leverage as much power from these deep neural networks that you can with as little141

data as possible, making deep neural networks more accessible. Proposed few-shot learning142

approaches typically focus on taking one component of the traditional deep neural network143

training pipeline and adapting it to perform better with few training samples. There are144
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3 main types of approaches, and although I present these approaches as separate fields in145

the area of “few-shot learning” it is not uncommon to have one approach from each field146

as part of your final model.147

1. Transfer Learning - Approaches where you take pre-trained models trained on148

large datasets for a similar problem to yours and then “transfer” some of the learned149

knowledge to your limited data problem.150

2. Data Augmentation - Approaches that propose ways to generate more data samples151

from your existing ones to increase your dataset size.152

3. Meta Learning - Approaches where your network “learns to learn” or extracts some153

useful knowledge on how to train your network for your problem by training other154

networks on subsets of other similar data and similar problems in what is called155

“episodic training”.156

1.3.1 Transfer Learning157

In transfer learning the goal is to take models that are already trained and then “transfer”158

as much useful knowledge as possible to your specific problem. This is done by simply159

loading a trained network, freezing some of the layers so they do not get updated while160

training anymore, removing the last layer which is usually problem dependent, and adding161

a last layer that fits your specific problem.162

However, this only works well when the network is pre-trained on data that is similar163

to yours. The bigger the gap between the domains and problems used for the pre-trained164

network and your own, the worst the performance will be with transfer learning. Because165

of this big problem, the cases where you can actually use transfer learning and get good166

results are few unless you are working with RGB images for the common tasks of object167

classification or detection. If you are using a different type of input data for a different168

task, the odds that you will find a pre-trained model with similar data to yours becomes169

much lower.170
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1.3.2 Data Augmentation171

In data augmentation the goal is to take your existing limited data and generate “new”172

samples from them to increase the size of your dataset. If you have image data, one of the173

simplest and most popular approaches is to perform simple image processing operations like174

rotation, cropping, re-sizing, mirroring, and more. However, this requires careful thinking175

as not all operations will produce good augmentations. For example, for the MNIST [13]176

hand-written digit dataset it does not make sense to flip or mirror images as the new images177

will not represent the same digit as the original (a flipped 6 can become a 9). This is one178

of the disadvantages of data augmentation, the augmentation must still represent the same179

label as the original data so if your data is not based on images or is complex it may be180

difficult to come up with rules for data augmentation.181

1.3.3 Meta Learning182

In meta-learning the goal is to extract useful information that can be used to train your183

model by training other models and learning how and what those models learned (meta-184

data). For example, let’s take the random initialization of networks. Although you can185

use a uniform or normal distribution, MAML [14] proposes learning an initialization that186

leads to maximal performance on a new problem with a few training steps and a small187

amount of data. This is done by feeding entire “problems” as input data and optimizing188

the model to produce good results with as few training steps as possible. Therefore you189

train this model on other problems, and then you feed your specific problem to it so you190

can also produce good results with few training steps. The drawback of this approach is191

that it can be computationally expensive to train “entire problems” multiple times while192

optimizing this architecture, the problem of vanishing/exploding gradients is still present193

in this network, and selecting which extra problems and datasets to use can be a problem194

as well.195

Another popular meta-learning approach is called metric learning. The idea is pretty196
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simple, you might only have a few pictures of zebras and a few pictures of dogs so to classify197

a new picture you can just compare it to a few of each and find which is the most similar.198

Thus the main principle is to train models that can compute similarities through metrics.199

Siamese Networks [15] are one of the earliest few-shot learning methods proposed to tackle200

the limited data problem and this approach focuses on metric learning. Siamese Networks201

take three inputs, a sample from your dataset called an anchor, a sample similar to your202

anchor called the positive sample, and a sample different to your anchor called a negative203

sample. Then the network is trained to produce embeddings (1D vectors) such that similar204

samples are close in that metric space and different samples are further apart, allowing205

you to use Euclidean distance to find similar samples. This idea was further improved in206

Prototypical Networks [16], where the idea is now to find “prototypes” or samples that207

represent a general class of similar objects instead of having the triplets. For example, you208

may find one of your pictures is a good representation of “mammals” and can make it easier209

to identify new mammals in the future. In Relation Networks [17] this metric learning idea210

is generalized even more. Specifically, the authors propose an end-to-end two-part network211

that is trained to learn a custom distance metric used to compare pairs of images called a212

“relation score” instead of always using Euclidean distance. Then when a new image needs213

to be classified, we can compare it against our few labeled samples and find the most similar214

one or the one with the highest “relation score”. As the distance metric used for comparison215

is custom learned, the model performs better than if you used general distance metrics like216

Euclidean distance or Cosine similarity like in [16] or [15]. These type of architectures,217

however, are typically designed for image classification problems and cannot be used as-is218

for more complex tasks like image segmentation or object detection or for other types of219

input data that are not regular camera RGB images.220

x



1.4 Few-Shot Learning By Integrating Physics Into221

Neural Networks222

One of the reasons why humans might be able learn new things with few examples and do223

few-shot learning is because we have a lot of previous knowledge that we leverage in our224

learning process and we never truly start from scratch as deep neural networks do. My225

research focus is then on how we can integrate our knowledge of physics to improve neural226

network performance and have models more “easily learn” with few examples, mimicking227

humans. Physics is a widely studied area of science that has been researched for hundreds228

of years for which we not only have a lot of mathematical equations but also a lot of229

expertise and knowledge in the field. As many problems across different disciplines are230

based on real-world data they must follow the “laws of physics” and so we can leverage our231

knowledge of physics to help improve performance on limited datasets that deal with real232

world data.233

There exists an area of study called Physics-Informed Neural Networks (PINNs) [18]234

where the aim is to integrate physics that can be described as systems of partial differential235

equations (PDEs) directly into the loss function of a network. Unless you are working236

with simulation data, it will be close to impossible to collect all the variables and data237

needed to describe how your specific problem behaves exactly at all times. There is just238

too much data at too many different scales, from quantum effects all the way to space-time239

gravitational influences. Due to this, scales and times are often discretized when working240

with these PDEs like when using the Finite Element Method (FEM) to compute solutions241

for these PDEs. PINNs allow you to model some of these intrinsic variables of your data242

and use them along with the laws of physics (PDEs) that describe how they interact to243

increase your model performance. I will be extending this area by creating new network244

models and loss functions that will allow us to integrate PINNS and other neural network245

models to solve problems from two disciplines that have limited datasets.246
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1.5 Specific Problems From Other Disciplines That247

Have Limited Datasets248

As my research focus is on applying physics to neural networks to improve model perfor-249

mance on problems with limited datasets I selected problems from two disciplines that had250

limited data available and whose data must follow the “laws of physics” in some way. Those251

problems were “Fluid Flow Velocity Prediction” from mechanical engineering and “Glacial252

Ice Segmentation” from geology.253

1.5.1 Fluid Flow Velocity Prediction254

Understanding how fluids flow is very important for the study and development of airplanes,255

cars, boats, rockets, and much more. One of the widely researched approaches used to study256

fluid flow is setting up Computational Fluid Dynamic (CFD) simulations using software257

developed specifically for that purpose like Ansys Fluent[19]. It is unfeasible to model every258

particle of every fluid we are interested in modeling at every scale and every point in space259

due to computational and time limitations, so it is necessary to define a discretized mesh260

of finite elements of specific size as shown in Figure 1.1 below.261

xii



Figure 1.1: Example of a discretized mesh of finite elements used for a CFD fluid flow
simulation.

After deciding the scale which we are interested in modeling and studying, the next262

step is to define the relevant geometry, fluids, and boundary conditions for the simulation263

as show in Figures 1.2 and 1.3 below. Lastly, a solver is selected and the simulation is run264

for a specific period of time.265
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Figure 1.2: Example of geometry used for a CFD fluid flow simulation. This modeled
geometry is for a proposed water-braking mechanism for a pusher sled system used in the
Holloman Air Force Base for experiments.
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Figure 1.3: Example of boundary conditions used for a CFD fluid flow simulation. These
boundary conditions model how the geometry (water-breaking scoop) will interact with the
water as the pusher sled mechanism pushes the scoop at specific initial velocities.

One drawback of CFD simulations is that high-fidelity simulations can be very com-266

putationally expensive as having smaller finite elements, bigger meshes, bigger geometries,267

and bigger simulation environments increases the computations needed for the solvers to268

simulate each given time-step of the simulation. Although fluid flow datasets are available269

for some problems in fluid dynamics, many researchers are interested in fluid flows for spe-270

cific problems with different geometries and boundary conditions than those in the available271

datasets. As fluid flows are a widely studied area in mechanical engineering in the field of272

fluid dynamics, we know that the Navier-Stokes equations can be used to describe some of273

these flows and that these equations are partial differential equations (PDEs) allowing us274

to leverage Physics-Informed Neural Networks [18] to tackle this limited data problem.275

1.5.2 Glacial Ice Segmentation276

Glaciers are a very important source of water for people and wildlife of many different277

regions of the world, as not only do they provide a source of drinking water but also water278
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for watering crops and generating hydroelectric power [20]. As these regions rely heavily279

on glacial melt as a water source, it is important to monitor and keep track of changes that280

happen to these glaciers over time.281

There exists multiple satellites such as NASA’s Landsat-7, Landsat-8, and Sentinel-282

2 that have captured hyperspectral images of these glaciers over a long period of time,283

allowing glaciologists to take these images and use their expertise to determine what areas284

of the images are clean ice, debris covered ice (ice mixed with rocks), and regular rocks in285

a process called glacier mapping. This is one of the ways that these scientists monitor the286

glaciers over time, and in the area of computer vision is called image segmentation. An287

example of this is given in Figure 1.4 below.288

Figure 1.4: Example of glacier mapping or segmentation of a satellite image into clean ice
and debris covered ice glaciers.

However, manually labelling hyperspectral satellite images into clean ice and debris289

covered ice glaciers is a very time consuming task. This is due to two main reasons:290

• Satellite images have more channels than the regular 3 (RGB) in digital cameras, so291

they are hyperspectral images and require the usage of specialized tools (like QGIS)292
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and knowledge about what channels capture which bands of the electromagnetic293

spectrum to properly visualize and analyze.294

• High resolution images are difficult to segment as there are too many individual pixels,295

and although glaciologists use tools such as QGIS to label the images using geometric296

shapes instead of pixel by pixel to speed up the process it is still time consuming and297

difficult to label the borders/boundaries between the clean ice and debris covered ice298

specifically due to the amount of fine detail and care needed.299

Labeling a single patch of a glacier using Sentinel-2 satellite imagery can take an expert300

1 to 4 weeks depending on the complexity of the image, and the Hindu-Kush Himalayas301

(HKH) glaciers are made up of at least 256 of such patches.302

A labeled dataset exists for the glaciers in Hindu-Kush Himalayas (HKH) region created303

by the International Centre for Integrated Mountain Development (ICIMOD) for images304

taken with NASA’s Landsat-7 satellite. These images contain 7 channels including RGB,305

Near-Infrared, and Digital Elevation Map data.306

There also exists a dataset of glacier ice velocities created by the National Snow and Ice307

Data Center containing the surface velocities of major glacier-covered regions in the world308

including the Hindu-Kush Himalayas (HKH) spanning from 1985 to 2018 and compiled309

from multiple of NASA’s Landsat satellites called the “MEaSUREs ITS LIVE Regional310

Glacier and Ice Sheet Surface Velocities” dataset. As glacial ice velocity prediction is a311

specialized form of fluid velocity prediction where the fluid being analyzed is ice from the312

glaciers, we can use the Navier-Stokes equations once again to leverage Physics-Informed313

Neural Networks [18] to help us tackle this limited data problem.314

1.6 Thesis Statement315

Incorporating physics in neural network models through modification of data and loss316

functions will allow for better performance and faster convergence for the problems of fluid317
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flow velocity prediction and glacial ice segmentation.318

1.7 Expected Contributions319

The proposed contributions of this research are as follows:320

1. A physics-informed neural network model for the task of fluid flow velocity321

prediction - We will develop a model that uses Physics-Informed Neural Networks322

(PINNs) [18] for the task of fluid flow velocity prediction and investigate ways to323

combine PINNs with networks built for sequential data (such as [21]) to take advan-324

tage of how fluid flows over time sequentially allowing for improvements on network325

convergence speed.326

2. A neural network model with physics-informed data augmentation for the327

task of glacier mapping - As there already exists a network for glacier mapping by328

image segmentation [22], we will investigate ways to augment the current available329

labeled data for glacier mapping based on physics, improving the performance of the330

pre-existing segmentation model.331

3. A physics-informed neural network model for the task of glacial ice velocity332

predictions - Glacial ice velocity prediction is a subset of the general fluid flow333

velocity prediction problem, allowing us to use Physics-Informed Neural Networks334

(PINNs) [18] combined with networks built for sequential data (such as [21] and [23])335

to leverage the fact that glacial ice flows over time (sequentially) for the task of glacial336

ice velocity prediction.337

4. A physics-informed neural network model for the task of glacier mapping338

- We will develop a new model based on a combination of Physics-Informed Neural339

Networks (PINNs) [18] and a pre-existing segmentation model [22] for the task of340

glacier mapping by segmenting glacier ice in satellite images. We will investigate ways341
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to combine datasets containing hyperspectral satellite images that have no velocity342

information and datasets of ice glacier velocities to leverage the knowledge we have343

about the physics of ice glacier velocity flows and achieve better performance on the344

segmentation of glacier ice.345
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Chapter 2346

Physics-Informed LSTM Network For347

Velocity Prediction of Fluid Flow348

Simulations349

2.1 The Importance of Fluid Flow Velocity Prediction350

In fluid flow velocity prediction you model a system that describes some physical geometry351

and specific fluids with some initial boundary conditions and predict how these fluids will352

flow and interact in the system and what the fluid velocities will be at every point in the353

system after a certain amount of time has passed given the initial boundary conditions.354

This problem is important in mechanical engineering as the mechanical designs of airplane355

wings, turbines, and other important machinery are based on how they will interact with356

the flow of air, water, and other particles in the atmosphere or environment where they are357

used.358
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Figure 2.1: An example of a Computational Fluid Dynamics (CFD) simulation predicting
the fluid flow velocities in an engine.

2.2 Long Short-TermMemory Networks (LSTMs) For359

Time Series Data360

Figure 2.2: A regular 3-layer dense neural network on the left, an LSTM on the right.
On the LSTM the blue dots with circles are the specialized LSTM cells, and note how
self-connections from RNNs are present in LSTMs as well.
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Long Short-Term Memory Networks (LSTMs) [21] are neural network models designed to361

learn long term dependencies in sequential datasets and are a variation of the Recurrent362

Neural Network (RNN). LSTMs selectively pick and store short-term information that363

might be useful to know for later using a unique cell structure that includes an input,364

forget, and output gate. These gates determine what past information to forget and what365

new information to keep track of and it is through this mechanism of storing short memories366

for a long period of time where “long” short-term memory derives the name from.367

Figure 2.3: An LSTM cell or unit showing all the gates and operations.

2.3 Adding Physics to LSTMs368

I began to tackle the problem of fluid flow predictions by creating a new neural network369

architecture based on a combination of Physics-Informed Neural Networks (PINNs) and370
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Long-Short Term Memory Networks (LSTMs) [24]. Specifically, we created a two-branch371

network architecture that takes as inputs the measurements taken from a Computational372

Fluid Dynamic (CFD) simulation and predicts what the velocity components (in 2D) will373

be for a given timestep.374

2.3.1 Fluid Flow Velocity Data From Simulations375

The data was generated using Ansys by creating a simulation in which we modeled a376

water-braking scoop mechanism in 2D space, constraining the domain of the model to a377

2.2 meter by 4 meter box and running the simulation with different inlet velocity profiles.378

The simulation geometry, mesh, and boundary conditions can be seen in Figures 1.2, 1.1,379

and 1.3 in the Introduction section.380

The following figures demonstrate the simulation results for different boundary condi-381

tions at specific times in the simulation. For the figures with two pictures, the left picture382

represents the pressure and velocity contours and the right picture the velocity and water383

volume fraction.384

Figure 2.4: Velocity Inlet = 250m/s, Time = 0.011sec
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Figure 2.5: Velocity Inlet = 250m/s, Time = 0.016sec.

Figure 2.6: Velocity Inlet = 250m/s, Time = 0.025sec

The 7 measurements stored for each data sample in the simulation were:385

• The x-coordinate of the node, x386
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• The y-coordinate of the node, y387

• The timestep, t388

• The pressure (in atmospheres), p389

• The u-velocity representing the x-component of the velocity field, u390

• The v-velocity representing the y-component of the velocity field, v391

• The water volume fraction or percentage of water from 0 to 1, w.vf392

From now on, we will refer to data samples with the letter x, so for example xp is the393

pressure of the sample x and xpt is the pressure of the sample x at a specific point in time394

t.395

2.3.2 Measuring Network Performance With The Mean Squared396

Error397

To measure the performance of our neural network we used a metric called Mean Squared

Error which computes how erroneous our predictions were on average from the real values.

The metric is defined in Equation 2.1 below.

1

n

n∑
i=1

(ypred − ytrue)2 (2.1)

where ytrue was the real value, ypred was our predicted value, and n was the number of398

values or samples we were comparing.399

For perfect predictions the value of MSE = 0. Therefore, the closer to 0 the better a400

model is performing.401
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2.3.3 Proposed Network Architecture402

The proposed two-branch neural network took a range of time of measurements as input403

called the “lookback” and outputted the velocity components u and v that were predicted404

for the same position in space for the next timestep. The LSTM branch incorporated405

knowledge about the sequence and the Physics-Informed branch incorporated knowledge406

about the Partial Differential Equations (PDEs) describing in-compressible 2D discrete407

Navier-Stokes fluid flows. The architecture looked as follows:408

Figure 2.7: Physics-Informed LSTM Architecture showing both the LSTM and Physics-
Informed branches and their connection to the final output prediction.

LSTM Branch409

The LSTM branch had two stacked bi-directional LSTM layers with 32 activations each,410

followed by a Time Distributed layer that used a fully connected layer of 32 activations411

with a linear activation function. The Time Distributed layer applied the same weights to412

the previous LSTM outputs one timestep at a time. The LSTM layers were followed by a413

fully connected layer with 32 activations using the ReLU [25] non-linear activation function414
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which was then followed by a fully connected output layer. The output layer consisted of415

two outputs, the x-component of the velocity field called u which was represented as ulstm416

and the y-component of the velocity field called v which was represented as vlstm. The417

LSTM layers were connected to the fully connected part of the network by concatenating418

the two directional hidden states outputted by the last LSTM layer.419

Physics-Informed Branch420

As described in [18], the general 2D Navier-Stokes equations:421

ut + px + λ1(uux + vuy)− λ2(uxx + uyy) = 0

vt + py + λ1(uvx + vvy)− λ2(vxx + vyy) = 0

ux + vy = 0

(2.2)

We assumed that for some latent function ψ(x, y, t)422

u = ψy

v = −ψx

(2.3)

Then we approximated ψ(x, y, t) using a dense neural network f with three inputs423

(x, y, t), two outputs (u, v), and two learnable parameters (λ1, λ2).424

fu(x, y, t) := ut + px + λ1(uux + vuy)− λ2(uxx + uyy)

fv(x, y, t) := vt + py + λ1(uvx + vvy)− λ2(vxx + vyy)
(2.4)

The combined physics loss we needed to minimize was then computed from the following
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four losses:

MSEu =
1

n

n∑
i=1

(ψy − ui)2

MSEv =
1

n

n∑
i=1

(−ψx − vi)2

MSEfu =
1

n

n∑
i=1

(fu(x
i, yi, ti))2

MSEfv =
1

n

n∑
i=1

(fv(x
i, yi, ti))2

(2.5)

Such that the total loss was:425

MSEtotal =MSEu +MSEv +MSEfu +MSEfv (2.6)

The architecture consisted of a simple dense network with 3 layers. The first layer had 32426

activations and used the hyperbolic tangent non-linear activation function (tanh), followed427

by another fully connected layer with 64 activations using tanh once again, followed by the428

output layer with two outputs. The automatic differentiation system included in PyTorch429

named autograd was used to compute the partial derivatives required for the computation430

of the final physics loss.431

Two-Branch Combined Model432

The two outputs of each branch were combined by using a weight α that was set between433

0 and 1. For our experiments, α = 0.5 (but in the future it could be set as a learnable434

parameter)435

upred = α ∗ ulstm + (1− α) ∗ upinns

vpred = α ∗ vlstm + (1− α) ∗ vpinns
(2.7)
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where (upred, vpred) were the final predictions, (ulstm, vlstm) were the two outputs of the436

LSTM branch, and (upinns, vpinns) were the two outputs of the Physics-Informed branch.437

2.3.4 Baseline Used To Compare Against Our Proposed Network438

The baseline used for this model was to simply assume that the velocities at the next439

timestep will be the same as those in the previous timestep for each data point.440

prevu = xut

prevv = xvt

ypredt+1 = (prevu, prevt)

(2.8)

where t was the current timestep, xt was the current data sample, xut was the u-velocity441

component of xt, y
v
t was the v-velocity component of xt, and y

pred
t+1 was our predicted velocity.442

2.3.5 Experimental Results443

The following table summarizes the results of the experiments and provides the mean444

squared error for the velocity components U and V for each model along with the total445

training time after 200 epochs. The experiments were performed using an NVIDIA RTX446

3090 and every epoch took around 27 seconds for non-informed LSTM models and 30447

seconds for physics-informed LSTM models.448

Model U V Time (min)
Baseline 5.455 2.561 0.061

PINNS Only 5709 12038 80
LSTM Only 1.7811 8.6962 117

PINNS+LSTM 0.4677 1.2794 142

Table 2.1: Comparison of the performance (MSE) of different models when using the
250m/s simulation for training and the 300m/s simulation for testing.
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2.3.6 Conclusion449

Our experimental results in Table 2.1 show that the Physics-Informed LSTM outperforms450

the non-informed LSTM approach and leads us to our conclusion that informing the LSTM451

about the governing physics leads to better performance than just using LSTMs or PINNs452

by themselves.453
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Chapter 3454

Glacial Ice Segmentation of the HKH455

Region With Physics-Informed Data456

Augmentation457

3.1 The Importance of Glacial Ice Segmentation458

Glacial ice segmentation refers to the problem of gathering hyperspectral images taken by459

satellites of different glaciers and segmenting or delineating which areas are glacial ice,460

which areas are debris covered ice (ice mixed with rocks), and which areas are just rocks.461

This problem is important in the field of geology as monitoring the amount and location of462

ice from glaciers such as the ones in the Hindu Kush Himalayas (HKH) is critical as these463

glaciers provide a source of freshwater to a big population of the world.464

3.2 Image Semantic Segmentation: Grouping Similar465

Pixels Together466

The task of semantic segmentation refers to grouping similar or related pixels of an image467

together, like those of a specific object. For example, grouping all the pixels of people,468

roads, buildings, or trees as seen in the figure below:469
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Figure 3.1: An example of semantic segmentation of an image. The pixels are grouped
together by different categories.

3.3 Glacier Mapping Through Segmentation of Ice in470

Hyperspectral Images471

Glacial ice segmentation or glacier mapping is simply the task of semantic segmentation472

applied to hyperspectral satellite images of glaciers. The goal is to determine for each pixel473

in the image whether the pixel is an area of glacial ice, debris covered ice, or background474

(regular rocks) as shown in the figure below:475
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Figure 3.2: Semantic segmentation of a glacier satellite image by a human annotator.

3.4 Convolutional Neural Networks: The Backbone476

of Almost All Networks That Use Images477

Convolutional Neural Networks [26] are one of the most important and fundamental neural478

network models when dealing with datasets that contain images and their role in state-479

of-the-art architectures in image classification competitions such as ImageNet and other480

image tasks cannot be understated. CNNs operate by assuming the inputs are images481

and performing operations on the pixels of these images called convolutions. The purpose482

of these convolution operations is to apply a ‘filter‘ to extract important features out of483

these images as feature maps, and because these CNNs are neural networks these ‘filters‘ or484

‘kernels‘ automatically learn to filter out information which might be useful for the specific485

task we are trying to solve. After the convolution operations a pooling operation is applied486

to the extracted feature maps which reduces size of these maps and the computational487

complexity of the network. A common pooling operation is ‘2x2 max-pooling‘ where the488

image is split into 2x2 patches and the maximum value at each of these patches is used to489
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create the new reduced size feature map, the idea being that the most prominent features or490

those with high values are the most important for solving image problems. After extracting491

important features of images through convolutions and pooling layers the next step in CNNs492

is to convert the 2D feature maps into 1D vectors by flattening them out and then feeding493

these feature vectors as inputs to a regular dense network to get a final output. The layers494

of this dense network are typically called ‘fully-connected layers‘ to differentiate them from495

the ‘convolutional layers‘.496

Figure 3.3: An example of a CNN model for an animal classification problem. Features are
extracted with convolutions and pooling, and then used in a fully connected network for a
final classification.

3.5 UNet: The Standard Network For Image Segmen-497

tation498

U-Net [27] is a variation of a CNN and was derived from the improvements achieved by499

Fully Connected Convolutional Networks (FCNs) for semantic segmentation [28]. FCNs500

transform the fully-connected layers of a CNN into convolutional layers and through an501

upsampling strategy called ‘deconvolution‘ or ‘transposed convolution‘ output an image502
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that is the same size as the original image. U-Net is split into two components, and503

encoder in the left half of the U-shape and a decoder in the right half.504

Figure 3.4: U-Net architecture showing both components and how they are connected to
output a final segmentation map. Note the straight connections feeding previous inputs
into later outputs going straight across.

The encoder also known as the contracting path is the left half of the U-shape that505

takes the original input image, applies regular convolutions and max-pooling, and outputs506

a reduced size feature map at the bottom. This is the feature extraction component that507

aims to capture the important context of the image.508

The decoder also known as the expanding path is the right half of the U-shape that509

takes the feature map from the encoder and through ‘transposed convolutions‘ or ‘up-510

convolutions‘ upsamples and expands the feature map all the way until we get an output511

segmentation map which is the same size as the original input image.512
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Lastly, to help the decoder maintain some of the location information that is lost while513

encoding there are ‘skip-connections‘ going from the encoder to the decoder straight across514

the U-shape.515

U-Net achieved state-of-the-art results when introduced in 2015 for biomedical image516

segmentation and these types of networks are still used to this day for many segmentation517

problems as a starting baseline.518

3.5.1 Measuring Network Performance With IoU519

To measure the performance of the segmentation model, the main metric we used was the520

Intersection over Union (IoU) which is defined in Figure 3.5 below and has numbers521

in the range from 0 to 1 with 1 being a perfect score.522

Figure 3.5: Definition of Intersection over Union.
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Figure 3.6: Three examples of different IoU values and what type of performance they
represent.

3.6 Adding Physics To Image Segmentation Through523

Data Augmentation524

As a first step towards tackling the problem of glacial ice segmentation I began by taking525

a previously proposed architecture for segmentation of the Hindu Kush Himalayas (HKH)526

region glaciers [22] and improving its performance by adding physics to the model through527

data augmentation.528

The main idea was to take the elevation map from the satellite images and encode an529

abstract representation of a “precipitation model” from that elevation map as a new channel530

of the image. Although the actual physics equations of ice flow were not explicitly encoded531

in this new data channel, this new data was created from an abstract representation of the532

physics and we therefore called it a physics-informed data augmentation. In this channel533

we simulated precipitation and encoded paths where water or ice might flow from the top534

to the valley of the glaciers.535
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Figure 3.7: For each pixel in the image we simulated precipitation going down the glacier
and accumulating, then we encoded such information as an additional physics-informed
channel.
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Specifically, the algorithm as follows:536

1. Take the elevation map as the input image elevation537

2. Create an empty image of the same size as the input called output538

3. For each pixel in the image, perform Breadth-First Search (BFS) with a special539

limitation where you can only visit pixels you haven’t visited before AND that are540

lower elevation than the current pixel popped from the queue as water/ice can only541

flow down.542

4. Each time a pixel is visited, the output at that pixel’s position increases by 1 as 1543

drop of water/ice has flowed down to it.544

5. At the end, normalize the image between 0 and 1 by subtracting the mean and545

dividing by the standard deviation.546

In pseudocode, the data augmentation algorithm would look like:547

Algorithm 1 Physics-Informed Data Augmentation Algorithm

im← elevation map from satellite image

output← image full of zeros the same size as im

im.shape[0]← number of rows in im

im.shape[1]← number of columns in im

for u := 0→ im.shape[0] do

for v := 0→ im.shape[1] do

Breadth First Search(im, output, u, v)

end for

end for

im = (im− im.mean())/im.std()

With the modified BFS algorithm being:548
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Algorithm 2 Physics-Informed Breadth-First Search

im← elevation map from satellite image

output← previous accumulated output from other pixels

u← row of source pixel

v ← column of source pixel

source← (u, v)

visited = source

Q = Queue with source appended to it

while Q ̸= Empty do

x = Q.pop()

curr elevation← im[x]

if x ̸= source then

output[x]+ = 1

end if

for n in get neighbors(im, x) do

n elevation← im[n]

if n not visited & n elevation < curr elevation then

Add n to visited

Append n to Q

end if

end for

end while

The following figure presents an example of the results after performing the augmenta-549

tion.550
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Figure 3.8: Left is the elevation map from one of the glacier satellite images where white
pixels are peaks and darker pixels are valleys. Right is the resulting physics-informed data
augmentation channel.

3.6.1 Glacier Mapping Data From ICIMOD And Landsat7 Satel-551

lite552

The data used to train and evaluate the models were gathered and labelled by experts at the553

International Centre for Integrated Mountain Development (ICIMOD) from multispectral554

imagery from NASA’s Landsat 7 satellite for the glaciers of the Hindu Kush Himalayas555

region from 2002 to 2008.556

3.6.2 Baseline Network557

The baseline model used to evaluate our proposed data augmentation technique was the558

Boundary-Aware U-Net for Glacier Segmentation model developed and published in 2023 by559

Bibek et. al [22]. No modifications to the model were made apart from slight changes to the560

hyperparameter configuration and the addition of the physics-informed data augmentation561
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technique.562

3.6.3 Experimental Results563

Model Background IoU CleanIce IoU DebrisIce IoU
Regular U-Net N/A N/A 0.2850
Regular U-Net N/A 0.6560 N/A

Boundary-Aware U-Net (Baseline) N/A N/A 0.3594
Boundary-Aware U-Net (Baseline) N/A 0.6817 N/A

Physics & Boundary-Aware U-Net (mine) 0.8640 0.6350 0.3850

Table 3.1: Comparison of the performance of different neural network models by the In-
tersection Over the Union (IoU) between the predicted labels and the true labels for each
class. IoU is a metric between 0 and 1, with 1 being a perfect score.

3.6.4 Conclusion564

The current experimental results demonstrate that my proposed physics-informed data565

augmentation leads to improved performance for the segmentation of Debris-covered Ice566

from the baseline model. This is significant as classification of Debris-covered Ice is a more567

challenging task than that of Clean Ice for both the baseline model and expert glaciologists.568

With some hyper-parameter tuning I hypothesize that we can reach up to 0.40 IoU, and by569

switching U-Net to a newer state-of-the-art segmentation model such as MANet [29] along570

with using newer loss functions such as the Unified Focal Loss [30] I believe we might be able571

to reach above 0.50 IoU. Although my proposed approach does not outperform the baseline572

for Clean Ice segmentation, I believe this is due to the fact that the original baseline uses573

two separate binary models for segmentation of each class instead of one unified multi-class574

model. I will train two separate binary models for a more fair comparison in the final575

version of my full dissertation.576
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Chapter 4577

Physics-Informed Network For578

Glacial Ice Velocity Predictions579

As my next step, I propose making a new Physics-Informed architecture based on what I580

learned from the Physics-Informed LSTM Network [24] which I previously applied to fluid581

flow simulations and adapting it to the problem of glacial ice velocity prediction. Glacial582

ice velocity prediction is simply the problem of fluid flow velocity prediction where the fluid583

is ice from a glacier. The aim of this step is to prepare a network architecture and dataset584

than can be later incorporated into the glacier segmentation problem as I hypothesize that585

including velocity information based on the physics laws of fluid flow will improve the586

performance of the glacier segmentation models proposed by [22]. There already exists a587

dataset of glacier ice velocities [31] for satellite images created by the National Snow and Ice588

Data Center which can be easily adapted and incorporated with my previous methodology589

for velocity predictions. However, since then I have learned about newer architectures that590

perform better than LSTMs [21] such as GRUs [32] and Transformers [33] which I would591

like to try as well.592

The main challenge with this step is determining how to set-up the Physics-Informed593

part of the network as my previous work focused on air and water flows and not ice flows.594

The architecture will not require many changes, it is the loss function which was based595

on the incompressible 2D Navier-Stokes equations which might need to be modified to596

accommodate the new type of data.597
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Chapter 5598

Physics-Informed MANet for Glacial599

Ice Segmentation of the HKH Region600

As my final step, I propose combining the Physics-Informed Network used for velocity pre-601

diction and the U-Net used for image segmentation to further improve the performance on602

the segmentation of ice in the HKH region. I will do this by trying two different method-603

ologies. In the first methodology, I will simply create a two branch network the same way604

I did with the Physics-Informed + LSTM network where we just have to carefully connect605

the inputs and outputs of their respective branches correctly. In the second methodology,606

I will use a self-learning loss that will combine the losses of both networks into one and607

optimize them both at the same time. The self-learning combined loss will be as follows:608

LCombined = α ∗ LUNET + (1− α) ∗ LPINNS (5.1)

where LCombined is the new combined loss from both networks, LUNET is the loss of the609

UNet ice segmentation network and LPINNS is the loss of the Physics-Informed velocity610

prediction network. This loss is based on the self-learning boundary aware loss specified in611

[22].612

The main challenge will be combining the datasets for the combined network as they613

were not taken at the same exact time and so the satellite images used for segmentation614

and the velocity images are slightly different. I do not believe this will present a major615

problem, as I have the script used to get both datasets so I will be able to control how616

far apart these datasets are in real time to minimize the error introduced by this problem.617
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I will also try a newer segmentation architecture that has been shown to be better than618

UNet called MANet [29] which I hypothesize will give me the best performance in the end.619

Lastly, I will develop a simple WebUI that allows glaciologists to feed their own hy-620

perspectral satellite images to our trained models to get labeled masks of glacial ice in a621

format that can be loaded into QGIS to help them with their glacier mapping efforts.622
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